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Computation of Spray Dynamics by Direct Solution of Moment Transport Equations—
Inclusion of Nonlinear Momentum Exchange
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Abstract

Using conventional particle tracking techniques to predict the dynamics of spray flows can be prohibitively
expensive, requiring large computation times and significant data storage. Moreover, because of the discontinuous
nature of the spray drops, data from a simulation of the flow does not produce smooth statistics unless the results
from many simulations have been averaged. Recently, a new model was developed that computes spray statistics
directly, without simulating the flow. In this paper, the model is extended to include the effects of nonlinear
momentum exchange between the phases. The approach was tested on a quasi-one-dimensional flow geometry.
The results are compared with a Lagrangian simulation and demonstrate good agreement.

Introduction

Spray flows play an important role in many
industrial processes today. It is therefore vital that we
have a full understanding of the physics of these flows
and are able to accurately predict both the distribution
and behavior of the drops and the dynamics of the gas
phase. Failure to adequately model these flows could
lead to inefficient fuel mixing, non-uniform industrial
coatings, or poorly distributed agricultural sprays.
Additionally, since one may wish to make small
changes to an engine or injector design to determine the
effects on the two-phase mixture, it is of significant
interest to reduce the time required to predict these
spray flows.

Perhaps the most common approach to studying
spray flows has been the Lagrangian-Eulerian, or
particle-tracking method.">** Drops are stochastically
injected into the gas phase and their trajectories are
determined by integrating a Lagrangian equation of
motion. The gas phase is typically modeled with the
time-dependent RANS equations with a suitable
turbulence model and exchange terms.

While particle-tracking methods have provided
useful information in many applications, they have
some potentially significant drawbacks. For instance,
data arising from a simulation must be post-processed.
If the quantity of interest is the mean number density in
each grid cell, this may not pose a problem. However,
if we are interested in more detailed statistics, the
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required computational time increases because 2
sufficient number of drops must pass through the cell to
provide a data set large enough for a meaningful
average. As the quantity of interest becomes more
specific, the necessary computation time becomes more
prohibitive.

An alternative approach which does not involve
simulation is to compute the evolution of a probability
density function (PDF) describing the drops. Williams’
was the first to derive a transport equation for a droplet
PDF, called the spray equation, analogous to
Boltzmann’s equation for molecules. Direct solutions
of the spray equation have been attempted,*”**'® but
only with limited success. The high-dimensionality of
the equation and current computational resources limit
the numerical resolution attainable within the phase
space.

Recently, a Maximum Entropy Moment Closure
(MEMC) model was described that gives a complete
description of a spray flow by computing the evolution
of its PDF along with the gas flow in which it is
embedded."" It was shown that both general and
detailed statistics about the spray drops and the solution
of the gas phase could be attained without the need to
average simulation data and in significantly less time
than might be required in a typical particle-tracking
method. The purpose of this paper is to incorporate a
nonlinear drag law into the model and compare test
results to a Lagrangian simulation.




Governing Equations

The equations that describe the evolution of our
system make use of ensemble averaging which is
independent of any time or length scales. They also
restrict us to single-point statistics.'> Each drop is
described by a relatively small set of characteristics
which contains the information of interest. This set of
characteristics describes a state vector & whose
elements define the axes of a hyperspace, called o -
space, through which the drop can move.

Because we are dealing with point particles,
volume displacement effects are negligible, and we are
able to treat any interphase exchange as if the drop were
alone in a locally uniform gas field.

With these assumptions, a probabilistic description
of the spray can be developed,'? defining A(%;t)" as
the probability density of finding a single drop in the
vicinity of a point (%,z). It is also the expected
number density of drops at ¥ and f. This dual
interpretation is important since we are generally more
interested in the expected number density rather than
the probability density. The probabilistic description
also defines the function f(&;X,t), the probability
density of finding a particular diameter and velocity.
This is conditioned on a drop existing at ¥ and ¢, and
&’ -space is the subset of @ -space excluding the spatial
coordinate. By combining these two functions, we
define the unnormalized single-particle probability
density function for the spray

F(a;t)da=2A(%;t) f(&';%,t)da’dV (N

F(a;t) is unnormalized because A(X;f), also an
unnormalized PDF, determines how much spray is
present at X and ¢.

If @ =(%,¢,V,T), atransport equation for F(a;?)
can now be derived."*'*"®

aa—f+Vx~(FV)+VV-(F5)
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Equation (2) is the spray equation. It describes the
evolution of the probability density function
F(%,9,9,T;t) through joint physical, diameter,

* For clarity when denoting a PDF, those arguments over which the
function is a density will be listed first, followed by a semi-colon,
followed by arguments that are parameters of the function.

velocity, and temperature space and includes source
terms accounting for binary collision S, , unary breakup
S,, and zero-body events S, such as nucleation and
complete vaporization. The spray equation has not
generally been viewed as a practical way of predicting
spray flows. It is an unusual evolution equation in the
sense that the quantity of interest is not only being
transported through physical space, but also through
diameter, velocity, and temperature space. A numerical
solution requires a full discretization of this hyperspace,
making a direct solution difficult. ;

Considering a non-vaporizing, isothermal spray
without collisions, breakup, or zero-body events, the
spray equation reduces to

%_fwx.(m)wv.(;—a):o 3)

The diameter axis is then discretized into equal-sized
bins, taking the approach of Tambour.'® By splitting
and integrating equation (3)," a set of velocity moment
transport equations within each diameter bin can be
derived as

a(4, gtvx%) 9, (A, (,),) = A’l “(a), @
a(lna<ti>")+vx,(xn<\—,vg> )=2/§;ﬂ (av.), ©)
a(/lngtvyh)wt (A, (w,) )= AA‘;” (@), ©
SL91) 1 o o) o),
a4, (;;v‘h)wt (2 (v, ) ©

To determine the droplet diameter distribution, an
evolution equation for the binned droplet number
density is solved
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A, is the probability of finding a drop in the vicinity of
some spatial point at some instant in time within the "
diameter bin. The overall droplet number density is

given by

(10)

lzzlﬂ

The terms on the right sides of equations (4)
through (8) account for the momentum exchange
between the gas and liquid phases. The acceleration
term 4 is given by

1 N o
—EC,,pglv—u[(v—u)ﬂ'T
a= — (11)
3
plg‘p.
where
C =§(1+015Re°-‘”) (12)
? " Re )
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Defining g=v-# as the slip velocity, the x-
component of the expected acceleration in the »"
diameter bin is

T

) (14)
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where
2
= M (15)
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is the representative droplet relaxation time of the »n"

diameter bin and ¢, and ¢, are the starting and ending
diameters of the bin, and ¢,,,,, =+/¢,¢, . Similarly,
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P (16)
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Quasi-One-Dimensional Spray Problem

Because we are interested in a spray problem that
is understandable, physically interesting, and tractable
while at the same time being able to evaluate the spray
model, we make use of a quasi-one-dimensional flow. -
Figure 1 shows the geometry for this problem. At

x=0 there is a two-dimensional array of spray
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Figure 1 Geometry for quasi-1D spray flow

injectors that extends infinitely in the y-direction. Each
injector delivers a distribution of drops into an
incompressible gas, which initially has a low level of
turbulence. The array and each injector on it extend
infinitely in the z-direction, resuiting in a series of
wedge sprays of spherical drops.

Now imagine an ensemble of these arrays.*
Because we wish to develop a quasi-one-dimensional
flow, we restrict the PDF for the drop velocities at each
injector to have a mean transverse (y-direction) velocity
of zero. If there is an infinite number of realizations in
the ensemble, then there is no preferential location
along the transverse axis since there is equal probability
for a drop to have a positive y-velocity of some
magnitude as there is for a drop to have a negative y-
velocity of the same magnitude. Similarly, we have a
zero-mean gas velocity component in the y-direction,
though fluctuations do occur. Because there is no
preferential location along the transverse axis, there are
no variations along that axis across the ensemble, and
therefore, derivatives of averaged quantities in the y-

*Toensure a quasi-one-dimensional geometry, two approaches can
be taken with the injectors. First, in each realization of the ensemble,
the injectors can be placed on the array at random. Alternatively, the
injectors could be equally spaced on each array, but shifted slightly
from one realization to another. In either case, the flow will be quasi-
one-dimensional across the ensemble.




direction are zero. So, the three primary constraints for
this problem are '

M =0 (17)
oy

Also, so that no mean flow develops in the transverse
direction, there can be no correlation between the x- and
y-components of velocity in either phase. Thus, all
cross-component and  cross-component/cross-phase
moments are zero. Substituting these constraints into
the transport equations yields

=+ V. (4,{v,) )=0 (18)
A (v.),) (A (%),)
ot ox
=B (), -w) 19)
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If constraints (17) are applied to the incompressible
RANS equations, we obtain

ou,) _
> =0 (22)
3u,) __a(p)_3(x)
ot ox ox (23)

#31v, A{p (v, —u,)(1+0.15Re" )}

Equation (22) says that the mean gas velocity is a
constant in space. If we specify the inlet mean gas
velocity as a constant in time, then the mean gas
velocity throughout the domain is constant in both
space and time. This makes solving the gas momentum
equation unnecessary unless one is interested in the
pressure.

Closure

Several models are used to close the above set of
equations. First, a maximum entropy approach'> '®'7
is taken to close the higher-order moments, such as the -
third-order velocity moment in the advection term in
equation (20). The maximum entropy principle states
that of all possible PDFs consistent with a set of given
(moment) constraints, the one PDF that is most
unbiased is the one with the most entropy. All known
information is included in the form of the constraints,
with no extraneous information that might tend to bias
the PDF. We can then integrate the maximum entropy
PDF to obtain values for the higher-order moments.

Additional modeling is required for the cross-
phase/same-component moments that appear in the
equations. In the derivation of the spray equation, the
gas velocity was not included as part of the set of
characteristics that describes a drop. This amounts to
an independence assumption between the two phases
which is non-physical. We must therefore develop a
model for these moments. This will be done by
choosing a functional form for the correlation
coefficient. The correlation coefficient is defined as

(upv,), —(u)(v,),

g

Corr, = 24)

u,o-v\_.n

where ¢, and o, are the gas and drop velocity

variances, respectively, in the n" diameter bin. In
general, the correlation coefficient can have any value
between negative one and positive one, inclusive. The
physics of this problem, however, dictate that the
coefficient must be bounded between zero and positive
one. Physically, this is because a positive increase in
the drop velocity will produce a positive increase in the
gas velocity.

Perfect correlation between the velocities of the
two phases implies that their means and variances are
identical. Any differences would reduce the degree of
correlation, and since those differences can be large, we
assume that there is zero correlation if either the
difference of the means or the differences of the
variances are infinite. =~ We also know that the
correlation depends upon the drop size. The velocities
of small drops ten to be more correlated with the gas
velocity because of their small relaxation times,




whereas the velocities of larger drops, which take
longer to respond to fluctuations in the gas phase, tend

to be less correlated. All of these considerations are
accounted for if the correlation coefficient is modeled
as an exponential function

Corr, = exp[—C,, ;"—) (25)

&

where the ratio of time scales represents a droplet
Stokes’ number. C, is an adjustable constant that must
be determined from experiment, 7, is the drop
relaxation time, and 7, is the gas-phase time scale.
Short drop relaxation times will have velocities that are
highly correlated with the gas velocity. Thus, drops in
the limit of having no mass will be perfectly correlated.
Large drops with long relaxation times will not be as
well correlated. The gas time scale is taken to be the
shorter of the mean residence time of a drop in a
turbulent eddy with size equal to the turbulent length
scale, or the turbulent time scale. If the residence time
within an eddy is short, that means that there is strong
slip between the drops and the gas, resulting in a low
velocity correlation. On the other hand, if the mean
residence time is long, then the correlation is based
upon the eddy lifetime, as defined by the turbulent time
scale.

To find the turbulent time and length scales, and to
close the Reynolds stress term in equation (23), we
introduce a k-& model that has been modified to
account for the presence of the drops. Applying
constraints (17), the governing equations for the model
are

ok K@) L 2l(, vk
TR v AL/ v”+€J5; (26)

e d(e(w))

—+
ot ox
. 27
-C,e+C, W, 0 v, |oe
=——e ey lly +-L | —
T ox|l * & Jox
where T is the turbulence time scale,
Cyk2
v, = (28)
€

and

C,=0.09 C,,=1.92

(29)
C,=15¢&=10¢ =13

where the constant values are the same as in Amsden ez.

al’® Notice that the terms containing the production of

turbulent kinetic energy are identically zero under the

imposed geometric constraints. The term

W, = (Fu.)+(Fu; ) (30)

is the negative of the rate at which the turbulent eddies -.
are doing work dispersing the drops. If W, <0, then
the turbulent kinetic energy is being transferred from
the gas to the drops, and if #, >0, the drops are losing

their energy and transferring it to the gas in the form of
turbulent kinetic energy. F, and F, are the

fluctuations from the mean force in the x- and y-
directions acting on the gas by the drops. Equation (30)
is computed by '

Wy == F(a:t)F-uda 31

For compactness, we do not show the final expression
here as it is rather lengthy. However, we should note
that it contains numerous nonlinear terms that would be
too expensive to compute directly. To remedy this,
each term was expanded in a Taylor series thus
reducing the time required to compute these terms.

Solution

The moment equations are solved using an
implicit, first-order, upwind scheme for the spatial
derivatives and a second-order backwards difference for
the time derivatives. A first-order scheme was chosen
for the spatial derivatives due to the difficulties
associated with solving moment equations. Moment
variables have relations among them that must be
preserved, constraining their values. For example, the
relation between the first and second moments of a PDF
is

(x*)=(x) 20 (32)

where X is any random variable. If this relation is not
maintained, then the numerical solution may either
become unstable or give non-physical answers.
Second-order numerical solutions of hyperbolic
equations can cause oscillations in the solution in
regions of strong gradients, even when artificial
dissipation is added.  Being non-physical, those
oscillations could cause the numerical solution of the
variance to become negative, corrupting the remainder




of the solution. Therefore, the first-order numerical
scheme is presently used.

Resulits

To provide a comparison between the MEMC
model and more conventional methods, a Lagrangian
simulation of the quasi-one-dimensional spray is
performed. Parcels, each representing 100 drops, are
tracked from the injector along their trajectories.
Because the mean gas velocity is a constant in space
and time, the gas momentum and continuity equations
are not solved, though the k—¢ model is used to
simulate the turbulence, giving each drop a random
“kick” over a duration equal to the eddy turnover time
or the drop residence time, whichever is shorter. This is
similar to what is done in other Lagrangian simulations
(e.g., KIVA®). The trajectory equations are solved by a
fourth-order Runge-Kutta method. Results for four
simulations are averaged and only shown for 0.03 sec
of flow time. This is due to the extensive time required
to compute Lagrangian statistics at longer flow times.

Table 1 lists the moments used to specify the
droplet PDF at the injector and the gas phase

Quantity Value Quantity Value
A 1000224 o | 3.0 mk
(¢) | 100um o, | 3.0ms

(¢) | 150 um’ (u) | 6.0ms
(@) | 300um’ || (u) | 0.0ms
(v.,) | 30mss o, | 03ms
(v,) | 0.0mss || 0, | 03ms

Table 1 Injector Conditions

characteristics. At the injector, there is a 24 m/s slip
velocity between the phases, well into the non-linear
drag regime. The diameter PDF is shown in Figure 2.
This PDF was produced using the Maximum Entropy
Formalism with the constraints listed in Table 1. The
velocity PDFs are Gaussian, which is also the
maximum entropy solution for the given moment
constraints in Table 1. The inlet condition for the
turbulent kinetic energy corresponds to a RMS value of
five percent of the mean gas velocity and the rate of
dissipation  of  turbulent kinetic energy s
€=k/100 sec.

Figure 3 shows profiles of the mean number
density at various instants in time. The spray
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Figure 3 Expected drop number density

propagates through the domain as a concentration wave
as indicated by the advancement of the leading edge.
Starting with 1000 drops/cm’ at the injector, the
expected number density increases downstream as the
drops decelerate in the slower moving gas until we
reach the leading edge where it drops off sharply.
There is excellent agreement with the results from the
Lagrangian simulation at 0.03 sec. Notice, however,
the amount of noise present in the simulation data. This
is indicative of this type of calculation where it is
necessary to compute discrete data, whereas in the
MEMC model, we get a smooth curve representing the
averaged data.

At the leading edge, the mean number density is
quite low. When drops first arrive at some spatial
location, only a few are present, those that were large
enough not to have been greatly influenced by drag.
This is shown in Figure 4 where the expected drop
diameter is plotted At the leading edge, there is a
greater mean drop diameter. This is caused by the
strong slip velocity present in the flow, decelerating all
but the most massive drops. As we move upstream, we
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encounter the smaller drops that were quickly
decelerated.

Figure 5 shows how the standard deviation of the
diameter PDF evolves. At the leading edge, the
standard deviation is large due to the fact that there are
so few drops out on the wave front. Those drops
present are large due to the size-velocity correlation that
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Figure 5 Drop diameter standard deviation

has developed. Figure 2 shows that there is a wide
range of large diameters that those drops have. It can
be argued that the dip in the standard deviation curve
behind the leading edge is a phenomenon that arises
from the spatial spreading of the drops that were
initially injected, however, due to the diffusion in the
numerical solution at the leading edge, this effect may
appear more significant than it really is. Finally, notice
that for this second-order moment, the amount of noise
in the simulation data has increased over that shown in
Figure 3. This is due to the fact that it is more difficult
to obtain higher-order statistics from a simulation, often
creating more ambiguity in the data. Despite the noise,
however, we see that the MEMC mode!l agrees well
with the simulation.

Figure 6 shows the mean drop axial velocity
profiles. The region closest to the injector is where the

g MEMC

- 0.03sec
0.07 sec
010sec
0.13sec

017 sec
20 i data
after 0.03 sec

254w

Expected Axial Velocity (m/s)
&
T

A A 3
0 500 1000 1500
Position (mm)

Figure 6 Expected drop axial velocity

highest velocity slip occurs. There are a number of
drops passing through this region that are moving faster
than the mean gas velocity. Due to their lower masses,
most of those drops rapidly decelerate, reducing the
mean velocity towards the mean gas velocity. At the
leading edge, however, the mean velocity increases. To
have reached the leading edge, those drops had to be
the fastest coming out of he injector, and because they
are also some of the largest, they haven’t been affected
by drag as much as the smaller drops. As the wave
front continues to move forward, those large drops slow
as evidenced by the decrease in the mean velocity at the
front as time goes on.

Figures 7 and 8 show the standard deviations of the
axial and transverse velocity distribution functions. The
largest standard deviations occur near the injector

1" MEMC
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e
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Figure 7 Drop axial velocity standard deviation

because the drops have not been influenced by the gas
phase long enough to have approached the gas velocity.
Downstream, the standard deviations rapidly decay
until we reach the wave front. It will take a longer time
for the larger drops to reach the gas velocity, but as the
leading edge propagates, the standard deviations
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become smaller and smaller. Comparisons with the
Lagrangian simulation again show good agreement.
This suggests that the submodels used to close the
cross-phase/same-component velocity moments and
term appearing in the turbulence equations representing
the effects of the drops do a satisfactory job in allowing
the overall model to predict the statistics of the spray.

Conclusions

We have incorporated the effects of nonlinear
momentum exchange between the phases into a model
which describes the evolution of a spray flow by
solving a series of moment equations with a maximum
entropy model. The model was tested for a quasi-one-
dimensional spray flow. Results were obtained for
several quantities of interest, including the expected
drop number density, expected diameter, expected axial
velocity, and various second-order moments. For
comparison, a Lagrangian simulation was performed
which showed good agreement with the MEMC results.
While the point was not emphasized in the present
work, we determined that the MEMC model requires
less computational time to provide similar statistics as a
simulation. Finally, we showed that the submodels
used to describe the cross-phase velocity moments and
the turbulence modification allow the overall MEMC
model to provide reasonable agreement with the
simulation data.

References

1. Dukowicz, J. K., “A Particle-Fluid Numerical
Model for Liquid Sprays,” J. Comp. Phys., vol. 35,
pp 229-253, 1980.

2. Gosman, A. D., & loannides, E., “Aspects of
Computer  Simulation of Liquid Fueled
Combustors,” J. Energy, vol. 7, pp. 482-490, 1983.

3. Amsden, A. A., O’Rourke, P. J., & Butler, T. D.,
“KIVA-II: A Computer Program for Chemically

12.

13.

14.

16.

17.

Reactive Flows with Sprays,” Los Alamos National
Laboratory, Report No. LA-11560-MS, Los
Alamos, NM, 1989.

Berlemont, A., Desjonqueres, P., & Gouesbet, G.,
“Particle Lagrangian Simulation in Turbulent
Flows,” J Multiphase Flow, vol. 16, pp. 19-34,
1990.

Williams, F. A., “Spray Combustion and
Atomization,” Phys. Fluids, vol. 1, pp. 541-545,
1958.

Bracco, F. V., Gupta, H. C., Krishnamurthy, L.,
Santavicca, D. A., Steinberger, R. L., & Warshaw,._
V. “Two-Phase, Two-Dimensional, Unsteady
Combustion in Internal Combustion Engines;
Preliminary Theoretical-Experimental ~Results,”
SAE paper 760114, 1976.

Westbrook, C. K., “Three Dimensional Numerical
Modeling  of Liquid Fuel Sprays,” Sixteenth
Internat. Symp. Combust., Cambridge, 1976.
Gupta, H. C, & Bracco, F. V., “Numerical
Computations of Two-Dimensional Unsteady
Sprays for Application to Engines,” 4744 J., vol.
16, pp. 1053-1061, 1978.

Haselman, L. C., & Westbrook, C. K., “A
Theoretical Model for Two-Phase Fuel Injection in
Stratified Charge Engines,” SAE paper 780318,
1978.

. Sirignano, W. A., “The Formulation of Spray

Combustion Models: Resolution Compared to
Droplet Spacing,” J. Heat Transfer, vol. 108, pp.
633-639, 1986.

. Archambault, M. R. & Edwards, C. F,

“Computation of Spray Dynamics By Direct
Solution of Moment Transport Equations,” AIAA
paper 2000-0197, 2000.

Edwards, C. F.,, & Marx, K. D., “Single-Point
Statistics of Ideal Sprays, Part I: Fundamental
Descriptions and Derived Quantities,” Atomization
and Sprays, vol. 6, pp. 499-536, 1996.

Williams, F. A., Combustion Theory, 2™ ed., The
Benjamin/Cummings Publishing Company, Menlo
Park, CA, 1985.

O’Rourke, P. J.,, “Collective Drop Effects on
Vaporizing Liquid Sprays,” Ph.D. thesis, Princeton
University, Princeton, NJ, 1981.

. Archambault, M. R., “A Maximum Entropy

Moment Closure Approach to Modeling the
Evolution of Spray Flows,” Ph.D. thesis, Stanford
University, Stanford, CA, 1999.

Jaynes, E. T., “Information Theory and Statistical
Mechanics,” Phys. Review, vol. 106, pp. 620-630,
1957.

Kapur, J. N., & Kesavan, H. K., Entropy
Optimization  Principles  with  Applications,
Academic Press, Boston, MA, 1992,




